HARD ALGEBRA - SET 1

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	•••

ID: d1b66ae6

$$-x+y=-3.5$$
$$x+3y=9.5$$

If (x, y) satisfies the system of equations above, what is the value of y?

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	***

ID: 3cdbf026

The graph of the equation ax + ky = 6 is a line in the *xy*-plane, where *a* and *k* are constants. If the line contains the points (-2, -6) and (0, -3), what is the value of k?

- A. -2
- B. -1
- C. 2
- D. 3

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	***

ID: 2937ef4f

Hector used a tool called an auger to remove corn from a storage bin at a constant rate. The bin contained 24,000 bushels of corn when Hector began to use the auger. After 5 hours of using the auger, 19,350 bushels of corn remained in the bin. If the auger continues to remove corn at this rate, what is the total number of hours Hector will have been using the auger when 12,840 bushels of corn remain in the bin?

- A. 3
- B. 7
- C. 8
- D. 12

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 2b15d65f

An economist modeled the demand Q for a certain product as a linear function of the selling price P. The demand was 20,000 units when the selling price was \$40 per unit, and the demand was 15,000 units when the selling price was \$60 per unit. Based on the model, what is the demand, in units, when the selling price is \$55 per unit?

- A. 16,250
- B. 16,500
- C. 16,750
- D. 17,500

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: be9cb6a2

The cost of renting a backhoe for up to 10 days is \$270 for the first day and \$135 for each additional day. Which of the following equations gives the cost y, in dollars, of renting the backhoe for x days, where x is a positive integer and $x \le 10$?

A.
$$y = 270x - 135$$

B.
$$y = 270x + 135$$

C.
$$y = 135x + 270$$

D.
$$y=135x+135$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	***

ID: b7e6394d

Alan drives an average of 100 miles each week. His car can travel an average of 25 miles per gallon of gasoline. Alan would like to reduce his weekly expenditure on gasoline by \$5. Assuming gasoline costs \$4 per gallon, which equation can Alan use to determine how many fewer average miles, m, he should drive each week?

A.
$$\frac{25}{4}m = 95$$

B.
$$\frac{25}{4}m = 5$$

c.
$$\frac{4}{25}m = 95$$

D.
$$\frac{4}{25}m = 5$$

Assessment	Test	Domain	Skill	Difculty
SAT	Math	Algebra	Linear inequalities in one or two variables	•••

ID: 45cfb9de

Adam's school is a 20-minute walk or a 5-minute bus ride away from his house. The bus runs once every 30 minutes, and the number of minutes, w, that Adam waits for the bus varies between 0 and 30. Which of the following inequalities gives the values of w for which it would be faster for Adam to walk to school?

A.
$$W - 5 < 20$$

B.
$$W - 5 > 20$$

C.
$$W + 5 < 20$$

D.
$$W + 5 > 20$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	•••

ID: 95cad55f

A laundry service is buying detergent and fabric softener from its supplier. The supplier will deliver no more than 300 pounds in a shipment. Each container of detergent weighs 7.35 pounds, and each container of fabric softener weighs 6.2 pounds. The service wants to buy at least twice as many containers of detergent as containers of fabric softener. Let *d* represent the number of containers of detergent, and let *s* represent the number of containers of fabric softener, where *d* and *s* are nonnegative integers. Which of the following systems of inequalities best represents this situation?

A.
$$7.35d + 6.2s \le 300$$
$$d \ge 2s$$

c.
$$\frac{14.7d + 6.2s \le 300}{d \ge 2s}$$

D.
$$14.7d + 6.2s \le 300$$

 $2d \ge s$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	•••

ID: ee2f611f

A local transit company sells a monthly pass for \$95 that allows an unlimited number of trips of any length. Tickets for individual trips cost \$1.50, \$2.50, or \$3.50, depending on the length of the trip. What is the minimum number of trips per month for which a monthly pass could cost less than purchasing individual tickets for trips?

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	***

ID: fdee0fbf

In the *xy*-plane, line k intersects the *y*-axis at the point (0, -6) and passes through

the point (2, 2). If the point (20, w) lies on line k, what is the value of w?

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	***

ID: e6cb2402

 $3(kx+13)=rac{48}{17}x+36$ In the given equation, k is a constant. The equation has no solution. What is the value of k?

Assessment	Test	Domain	Skill	Difficulty	
SAT	Math	Algebra	Linear functions		

ID: b988eeec

The functions f and g are defined as $f(x) = \frac{1}{4}x - 9$ and $g(x) = \frac{3}{4}x + 21$. If the function h is defined as h(x) = f(x) + g(x), what is the x-coordinate of the x-intercept of the graph of y = h(x) in the xy-plane?

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	•••

ID: 70feb725

During a month, Morgan ran r miles at 5 miles per hour and biked b miles at 10 miles per hour. She ran and biked a total of 200 miles that month, and she biked for twice as many hours as she ran. What is the total number of miles that Morgan biked during the month?

A. 80

B. 100

C. 120

D. 160

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	•••

ID: 1a621af4

A number x is at most 2 less than 3 times the value of y. If the value of y is -4, what is the greatest possible value of x?

Assessment	Test	Domain	Skill	Difculty
SAT	Math	Algebra	Linear functions	***

ID: af2ba762

According to data provided by the US Department of Energy, the average price per gallon of regular gasoline in the United States from September 1, 2014, to December 1, 2014, is modeled by the function *F* defined below, where the average price per gallon *x* months after September 1.

F(x) is

$$F(x) = 2.74 - 0.19(x - 3)$$

The constant 2.74 in this function estimates which of the following?

- A. The average monthly decrease in the price per gallon
- B. The difference in the average price per gallon from September 1, 2014, to December 1, 2014
- C. The average price per gallon on September 1, 2014
- D. The average price per gallon on December 1, 2014

Assessment	Test	Domain	Skill	Difculty
SAT	Math	Algebra	Systems of two linear equations in two variables	•••

ID: e1248a5c

$$\frac{1}{2}x + \frac{1}{3}y = \frac{1}{6}$$

In the system of equations below, \emph{a} and \emph{c} are constants.

$$ax + y = c$$

If the system of equations has an infinite number of solutions

$$(x,y)$$
, what is the

value of a?

A.
$$-\frac{1}{2}$$

B. 0

c.
$$\frac{1}{2}$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	***

ID: ae2287e2

A certain product costs a company \$65 to make. The product is sold by a salesperson who earns a commission that is equal to 20% of the sales price of the product. The profit the company makes for each unit is equal to the sales price minus the combined cost of making the product and the commission. If the sales price of the product is \$100, which of the following equations gives the number of units, u, of the product the company sold to make a profit of \$6,840 ?

A.
$$(100(1-0.2)-65)u = 6,840$$

B.
$$(100-65)(1-0.8)u = 6,840$$

C.
$$0.8(100) - 65u = 6.840$$

D.
$$(0.2(100) + 65)u = 6,840$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	•••

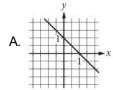
ID: 52cb8ea4

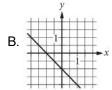
$$7x - 5y = 4$$

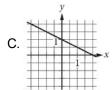
$$4x - 8y = 9$$

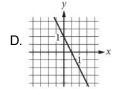
If (x,y) is the solution to the system of equations above,

what is the value of 3x + 3y?

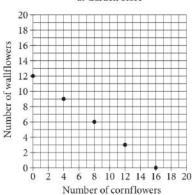

- A. -13
- B. -5
- C.5
- D. 13


Assessment	Test	Domain	Skill	Difculty
SAT	Math	Algebra	Linear equations in two variables	•••


ID: 0b46bad5


$$ax + by = b$$

In the equation above, a and b are constants and 0 < a < b. Which of the following could represent the graph of the equation in the xy-plane?



Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	***

ID: c362c210

Number of Cornflowers and Wallflowers at Garden Store

The points plotted in the coordinate plane above represent the possible numbers of wallflowers and cornflowers that someone can buy at the Garden Store in order to spend exactly \$24.00 total on the two types of flowers. The price of each wallflower is the same and the price of each cornflower is the same. What is the price, in dollars, of 1 cornflower?